
N88-21515 

SOME IMPLICATIONS FOR CYCLIC PLASTIC AND VISCOPLASTIC EQUATIONS 
BASED ON NONPROPORTIONAL LOADING EXPERIMENTS 

D.L. McDowell, J .  Moosbrugger, M. Doumi 
Georgia I n s t i t u t e  o f  Technology 

A t l a n t a ,  Georgia 30332 

E. H. Jordan 
U n l v e r s l  t y  of Connect icut  
Storrs, Connect icut  06268 

A number o f  d i f f e r e n t  f o rmu la t i ons  e x i s t  f o r  s t a t e  v a r i a b l e  o r  " u n i f i e d "  

c r e e p - p l a s t i c i t y  t heo ry  [ l - l o ] .  There i s ,  however, a common isothermal  

framework f o r  many o f  these models which Inc lude  backstress,  e.g. 

:n = f ( l I s  - all,r) (s  - a) 
Y a # Y  Y Y  

where h, and h, a r e  s c a l a r  hardening func t i ons ,  r4 and rr a re  s c a l a r  recovery 

func t i ons ,  a i s  t h e  backst ress,  K Is t h e  drag s t ress,  - s i s  d e v i a t o r i c  s t ress ,  

€n i s  t h e  i n e l a s t i c  s t r a i n  r a t e ,  and l l €n l l  = [€n:€n]1/2. 
- 

- - -  - 
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It is usual to first select hardening and recovery functions which encom- 

pass relevant uniaxial phenomenological behavior, and then to fit t h e  

associated material constants to this data using appropriate mu1 ti variate 

error minimization procedures. There is a somewhat prevalent assertion among 

existing theories that the directional index for the hardening term in equa- 

tion (2) is the inelastic strain rate, i.e. 

l = €  en 
I I  

(4)  

Sever 1 the 

the directional 

ries [2-3, 11-12] include a dynamic recovery term with a as 

index, i.e. 
- 

where hD is a scalar dynamic recovery function. Uniaxial testing alone i s  

insufficient to validate the directional index o f  the dynamic recovery term 

since a is collinear with P. This collinearity is also likely responsible 

for the absence o f  the dynamic recovery term in many theories. 
- - 

An dmportant attribute o f  multiaxial nonproportional loading is the non- 

collinearity of €n and a.  As will be shown in this paper, the need for the 

dynamic recovery term can be established from cyclic nonproportional biaxial 

tests. Furthermore, it is possible to comment on the relative magnitude o f  

the direct hardening and dynamic recovery coefficients and to assess the 

accuracy o f  the dl rect hardening and dynamic recovery directional indices 

based on selected tests. Axial-torsional experiments conducted with type 304 

stainless steel at room temperature and Hastelloy-X at 649.C will be discussed. 

n, - 
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Brief Di scussion of Results 

The need for the dynamic recovery term is evidenced in analysis o f  the 

type 304 stainless steel response. As shown in Figure 1, the backstress rate 

direction much more accurately approaches tangency to the backstress path 

(assuming constant, rate-independent Mises yield surface radius) with the 

addition of the dynamic recovery term. 

A1 lowing for rate-dependent response, data from sinusoidal 90' out-of- 

phase tests on Hastelloy-X were analyzed, Two possibilities were considered. 

Firstly, the coefficients of the direct and dynamic recovery terms, ha and hD 

in equation ( 5 ) ,  were considered scalars. Secondly, they were considered as 

tensor operators of diagonal form. Several admissible backstress paths were 

determined by fixed point iteration of an equation reflecting the constraint 

that backstress must lie along the backward projection of the inelastic strain 

rate direction from the current stress point, Each assumed initial value of 

backstress produced a unique, possible backstress path. For each path, the 

direct hardening and dynamic recovery coefficients were determined by least 

squares fit to the loading cycle. It was determined that the coefficient of 

direct hardening Is accurately described as a scalar, inferring adequacy of 

'the inelastic strain rate as the directional index. For the dynamic recovery 

term, however, the data suggest that a tensor-valued coefficient hD is appro- 

priate, inferring the inadequacy of backstress a as a directional index. 

Refer to Figure 2 for a comparison of the correlation achieved by using scalar 

and tensor-valued coefficients. 

- 
I 

Though limited in number and scope, these results indicate the potential 

utility of nonproportional biaxial testing in generalization o f  state variable 

cyclic viscoplasticity theories. 
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Conclusions 

From cyclic, strain-controlled, nonproportional tests on type 304 stain- 

less steel and Hastelloy-X, the followlng statements may be made: 

1. A dynamic recovery term Is essentlal to properly model the backstress 

evol ut i on. 

From analysis o f  Hastelloy-X data obtained at 649'C, the Inelastic strain 

rate appears to be a satisfactory directional index for direct hardening, 

but the backstress appears to be an inappropriate directional index o f  

2.  

dynamic recovery. 

3. Sinusoidal, 90' out-of-phase axial torsional tests can be very useful in 

aiding detegni nation of backstress evol ution functions, i ncl udi ng both 

directional indices and scalar hardening functions, by virtue of the asso- 

ciated approximately constant magnitudes of overstress, inelastic strain 

rate and effective stress. Such tests have previously been associated 

with the study o f  nonproportional hardening effects but have more far 

rang ng applications. 
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